A Novel Method to Manipulate Osteoblastic Differentiation

Daniella Batarseh*, Alyssa Calabro**, Craig Queenan**, and Donna Leonardi*

* Bergen County Academies, Cell Biology Lab, 200 Hackensack Avenue, Hackensack, NJ 07601
** Bergen County Academies, Nano-Structural Imaging Lab, 200 Hackensack Avenue, Hackensack, NJ 07601

Introduction

Osteoporosis is the thinning of bone tissue and loss of bone density over time, leading to an increased risk of fractures. This poses severe health issues as a result of a bone fracture. In this study, we were interested in understanding the effects of zeolite on osteoblasts. Zeolite is a naturally occurring, aluminosilicate mineral with a variety of potential functions, including regulating differentiation and proliferation. Recent studies have found that zeolite can affect the proliferation and differentiation of cells, particularly osteoblasts, through various mechanisms. In this study, we aimed to investigate the effects of zeolite on osteoblasts and to determine whether it can be used as a method of regeneration. Mammals have very limited ability to regenerate bone, however, other species, such as birds, have the ability to renew bone through the proliferation phase, which allows them to reconstitute their bone tissue.

Methods

Zeolite was obtained from several sources. Zeolite samples were obtained from the Bergen County Technical Schools Administration, and zeolite powder was purified according to a previously published method. Zeolite was then resuspended in Dulbecco's Modified Eagle's Medium (DMEM) and added to the cell culture medium. Cells were cultured in a T75 culture flask seeded at 3,000,000 cells in 10 mL medium. Cells were incubated for 24 hours at 37°C, and 21% O₂. Cells were then treated with 50 μL/well of primary polyclonal TGF-β levels increased (Figure 3) and osteopontin levels decreased (Figure 4), indicating dedifferentiation.

Transmission electron microscopy imaging of osteoblasts treated with zeolite. Cells were imaged to determine the ability of the zeolite to induce intracellular changes. The zeolite was found to alter the morphology of the osteoblasts, with a decrease in the number of endosomes and an increase in the number of vesicles. This suggests that the zeolite is inducing an intracellular response through its potential binding to the osteoblast cell membrane.

Results & Discussion

Due to the lack of literature concerning zeolite, the effects of this particle on osteoblasts has not been extensively studied. However, zeolite has been shown to affect the proliferation and differentiation of cells, particularly osteoblasts, through various mechanisms. In this study, we aimed to investigate the effects of zeolite on osteoblasts and to determine whether it can be used as a method of regeneration. Mammals have very limited ability to regenerate bone, however, other species, such as birds, have the ability to renew bone through the proliferation phase, which allows them to reconstitute their bone tissue.

In high-magnification images, the osteoblasts clearly have been then treated by the zeolite. The effects of the zeolite may be explained by a signal transduction pathway that begins extrinsically. It has been previously shown that zeolite does not have an obvious effect on osteoblasts, but it has been hypothesized that there is a signal pathway which provides a cellular response due to the zeolite binding. The extrinsic response that promotes from zeolite to osteoblasts is responsible for their ability to regulate differentiation and proliferation. It has been previously shown that zeolite can induce an intracellular response through its potential binding to the osteoblast cell membrane.

Acknowledgements

* With thanks to S. Gerberich, Bergen County Executive
** Bergen County Board of Chosen Freeholders
*** Bergen County Technical Schools Administration
** Bergen County Technical Schools Administration
* Bergen County Technical Schools Administration

References

Presented at Microscopy and Microanalysis 2014 August 3 – 7, Hartford CT Paper Number: 77 Poster Number: 331