Treatment of Influenza-Induced Lung Injury with Iron Oxide Nanoparticles using an Ischemic-Reperfusion Model

K. Chew1, A. Waldron2, C. Queenan2, R. Pergolizzi1, and T. Hoffmann3

1. Bergen County Academies, Stem Cell Lab, 200 Hackensack Avenue, Hackensack, NJ 07601
2. Bergen County Academies, Nano-Structural Imaging Lab, 200 Hackensack Avenue, Hackensack, NJ 07601
3. Englewood Hospital and Medical Center, Surgical Research Laboratory, 350 Engle Street, Englewood, NJ 07631

Introduction

Influenza is a highly contagious and lethal disease. One of the dangers of this disease is inflammation in the lungs, leading to a high risk of complications and pneumonia. In order to prevent this, clinicians use various approaches to tackle the disease. However, it is important to note that not all approaches are equally effective. This study was designed to investigate how iron oxide nanoparticles (IONs) can be used as a potential treatment for influenza-induced lung injury.

The goal of this study was to evaluate the effectiveness of ION treatment in reducing inflammation in the lungs. We hypothesized that IONs would be effective in reducing inflammation and would be a viable treatment option for influenza patients.

In Vitro Results

1. Effects of ION treatment on cell viability.

2. Effects of ION treatment on cytokine production.

3. Effects of ION treatment on oxidative stress.

Results & Discussion

ION nanoparticles have previously been shown to be effective in reducing inflammation in various models of lung injury. In this study, we used a mouse model of influenza-induced lung injury to evaluate the potential of IONs as a treatment for this condition.

Inflammation in the lungs is a major contributor to the development of pneumonia and other complications. Previous studies have shown that IONs can reduce inflammation in various models of lung injury, including those caused by bacteria and viruses.

In this study, we found that ION treatment was effective in reducing inflammation in the lungs of mice infected with influenza. The results suggest that IONs have the potential to be used as a treatment for influenza-induced lung injury.

References


Acknowledgements

This work was supported by a grant from the Bergen County Academies Foundation. The authors would like to thank the staff at the Bergen County Academies Stem Cell Lab for their help with the experiments.

Presented at Microscopy & Microanalysis Micro 2015 August 1-6, Portland OR

Poster Number: 44 Paper Number: 118